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ABSTRACT	 Currently, in the geological studies it is clear that the generation process and the 
dynamics of development of an earthquake belong to the highly nonlinear and non-
stationary phenomena. For this reason, in recent years the authors, experts in the 
development of mathematical models based on Artificial Neural Networks (ANNs), 
decided to apply these mathematical models to forecast earthquakes. The aim of this 
experimental study was to test the capability of advanced ANNs and machine learning 
to estimate the magnitude of the events recorded daily. Features that describe each 
event are: origin time (UTC), latitude, longitude, depth, and magnitude. With seismic 
event means an event between 0.1 and 5.9 magnitude, in the database. We have tested 
the ANN technology on different data sets: a) USGS data from 1976 to 2002; b) USGS 
and ISIDe data together from 2005 to 2011; c) ISIDe data from 2005 to 2013. This 
paper aims at demonstrating as the ANNs are a promising technique for earthquake 
prediction and as an ANN training on the global data on earthquakes is also much 
more effective for a local earthquake prediction, than an ANN training on local data. In 
fact, the results show that the ANNs have very good performances both in functional 
approximation, than in pattern recognition when the training set represents a sample 
of worldwide earthquakes: 10% of absolute error of magnitude estimation and about 
90% of correct classification (1 of 3 classes) in pattern recognition task. The results 
using only the Italian ISIDe data set are also promising, although the few information 
available, but less precise than the previous ones: about 99% of correct predictions for 
events with M≤2.0, around 75% for moderate events (2.0<M<3.0), and a rate of correct 
classification between 30% and 40% with events where M≥3.0. This last result is not 
surprising, due to the small number of events with this magnitude available in the 
Italian data set (ISIDe). These results can also be the starting point for the development 
of a system based on ANNs to provide the daily estimation of possible future seismic 
events.
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1. Introduction

For several years, there are studies on the predictability of earthquakes (Kagan, 1997; Kagan 
and Jackson, 2000; Jordan et al., 2011), but the scientific community is still far from being able 
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to say that we have achieved significant results. However, as it is often the case with other events 
assumed at the time scientifically unpredictable, many geologists, physicists and mathematicians 
are working with the aim of eventually reach ing a result that can be operationally useful. As an 
example, we can mention the field of weather forecasting in the first half of the last century that 
was considered impossible, but it has now reached a level of operational predictability widely 
used in the field of environmental safety and economic viability.

It is now clear that the process of generation and the dynamics of development of an 
earthquake belong to highly nonlinear and non-stationary observable phenomena. For this 
reason, in the last years many scientists tried to apply Artificial Neural Networks (ANNs) to 
the issues concerning earthquakes, obtaining interesting and promising results (Sharma and 
Arora, 2005; Ashif et al., 2007; Suratgar et al., 2008).

In recent years, the Semeion Research Centre is working at the experimental level 
(Buscema and Benzi, 2011), to apply to earthquake prediction new and advanced mathematical 
models which come from the field of Artificial Intelligence, in particular the so-called 
Natural Computation and Artificial Adaptive Systems (ANNs, Evolutionary Algorithms, 
Artificial Organisms). Further, Pattern Informatics (PI) modelling has shown a way to provide  
intermediate forecasting about earthquakes (Crampin, 2012; Peresan et al., 2012). We think 
that the PI approach is a serious way to code the time, space and magnitude of the big quakes, 
but it could be improved with a more complex technique of mathematical modelling using 
advanced ANNs for function approximation.

In this paper, we have only been inspired from PI. Our main target was to test the capability 
of a new ANN to make deep learning of a simple earthquake data set, in order to estimate the 
magnitude of quakes at short term (one day/week before).

The objective of this research is the application of advanced ANN models for the estimation 
of the magnitude of the registered daily events. In particular, we focused on the prediction of 
the events recorded worldwide, using the USGS data, and in the entire Italian territory, using 
data coming only from Italian data sets. 

2. The databases

The first data set is formed by the seismic events recorded worldwide by USGS (http://www.
usgs.gov/) from 1976 up today.

The second reference database is formed by the seismic events recorded on the Italian 
territory since 1981. In particular, the events coming from the archive of the Istituto Nazionale 
di Geofisica e Vulcanologia (INGV), the Italian seismic bulletin that is part of the Italian 
seismic instrumental and parametric database (ISIDe Working Group, 2010, http://ISIDe.
rm.ingv.it). Temporal data available are structured as follows (table 1):

•	 catalogue of the Italian seismicity (CSI 1.1) for the period 1981-2002 (Castello et al., 
2006);

•	 seismic bulletin (BS), revising data from the Italian national seismic network, for the 
period 2003-2005;

•	 Italian seismic instrumental and parametric database (ISIDe, 2010; http://iside.rm.ingv.it/
iside/standard/index.jsp), for the period 2005-2013.
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Table 1 - Catalogues available for Italian events.

Database Starting from up to Events

CSI  1981-01-01  2002-12-31 39534

BS  2003-01-01  2005-04-15 3551

ISIDe  2005-04-16  2013-06-30 105637

Total events 148722

In our experimentations we have considered only the ISIDe data, that is from 2005 to 2013.
For both the data sets, features that describe each event are: origin time (UTC), latitude, 

longitude, depth, and magnitude. Seismic event means an event between 0.1 and 9.0 of 
magnitude, in the USGS database, and between 0.1 and 5.9 of magnitude, in the ISIDe 
database.

3. The Italian database

For the Italian data, daily forecasts of all recorded events from July 1, 2012 have been 
carried out using ANNs.

In order to verify the daily prediction of neural networks on those areas of the country 
where no events have occurred (true negatives), another data set of artificial events was created 
considering 2054 quadrants of size 20×20 km, where in 1755 of which at least one event with 
magnitude larger than 2.0 has been recorded, during the reporting period (2005-2012) (Fig. 1).

In order to generate artificial events with magnitude equal to zero, we have considered the 
period starting from January 2005 until June 2012 included. Then, in the period considered 
(January 2005-June 2012), about 475,000 artificial “not-events” were included to train the 

Fig. 1 - The 2054 quadrants of size 
20×20 km considered for a prediction 
test on the Italian territory: red squares 
show places where at least one event 
with H > 2.0 was recorded.
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ANNs: every day the coordinates of the 20×20 km box where no event occurred were added as 
a “not-event” to the data set. 

Subsequently, the entire data set for training and testing the ANNs includes globally 580,637 
events (105,637 from ISIDe and 475,000 boxes of 20×20 km, for each day when no event 
happened). Further, from July 1, 2012, every day the global database has been increased, as well 
as the events actually recorded, also from about 2054 artificial “not-events”.

4. The models

For the daily forecast, a Supervised Contractive Map [Sv-Cm: Buscema and Benzi, (2011)] 
and neural networks with supervised feed forward topology (Rumdhart et. al., 1986; Buscema, 
1998a, 2013) were used.

An SV-Cm is an advanced type ANN especially suitable for deep learning (Hinton et. al, 
2006; Bengio, 2009). Here below we show the forward transfer equations of the signal from 
the input to the output vector and the consequent equations for the weight matrices updating 
(learning equations).

Legend:
[l] = number or name of the ANN layer;
ui

[l] = values of the all i-th nodes of the l-th layer;
wi,j

[l] = weight matrix connecting the layer [l-1] to the layer [l];
C[l] = number of nodes of l-th layer;
ti = value of i-th of the dependent variable;
LCoef 	= ANN learning rate.

Signal transfer from input layer to output layer:
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The SV-Cm calculates two net inputs for each node: a classic weighted input [Eq. (1)] and a 
contractive input [Eq. (2)].This second net input tends to decay or to increase when the positive 
or negative value of the weight (w) becomes close to a specific constant (C).

Eq. (3) activates each node according to a sine function of the two net inputs (the contractive 
input works as a harmonic modulation of the weighted input). The advantages and the 
disadvantages of the sine transfer function to work properly into the topology of Multilayer 
Perceptron were already analyzed in the scientific literature (Le Cun et al., 1991, 1998).

Eq. (4) shows a typical error calculation using the distance between the desiderate output and 
the estimated output, times the first derivative of sine transfer function.

Eq. (5) works in the same way of Eq. (4), but using the chain rule to calculate the local error 
of each hidden unit.

Eq. (6) updates the weight matrices, using typical back error propagation, with a contractive 
factor useful to limit an extreme growing of each weight value.

This neural network has been trained every day in different ways depending on the encoding 
of information of events in the input vector:

•	 the first network with 7 inputs (with USGS data and when USGS data  are missing with 
ISIDe data);

•	 the second one with 15 inputs (with ISIDe data).
In both cases, the networks were structured with 3 levels of 48 hidden units, in order to 

improve a deep learning of the training set (Bengio, 2009; Raiko et al., 2012) and the learning 
coefficient (LCoef) was fixed at 0.01 for each layer.

The SV-Cm was trained:
a.    �each day before the prediction phase for 1000 epochs (about 2 hours of computer time - 

two cores CPU), with the inclusion of the new data occurred with the ISIDe data and for 
the real time Italian quakes prediction;

b.    �once for 500 epochs with the USGS data for a retrospective prediction task.
The prediction phase runs in a few seconds each day in both cases.
Fig. 2 shows an example of Supervised Neural Network with 3 hidden levels.
Before deciding to choose an SV-Cm for the prediction task shown in this paper, we have 

compared its performances with other algorithms and using different earthquake catalogues 
(USGS and ISIDe).

4.1. Test 1: function approximation with USGS data only
The first comparison considers the USGS catalogue from 1976 to 2002: after a short pre-

processing we have represented each event by 7 independent variables (time and space: year, 
month, day, hour, latitude, longitude, depth) and one dependent variable (magnitude). In this 
case, we have tried a functional approximation of magnitude of each event considering only its 
space and time of occurrence. 

(5)

(6)
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The entire data set was composed of 324,542 events whose distribution is shown in Fig. 3.
The entire data set was split into two halves randomly: a subset was used to train the 

algorithms and the second subset was used as blind validation test. Each algorithm was 
evaluated only in test phase using the following much known cost measures:

1. The Root Mean Square Error (RMSE), a traditional measure for ANNs:

€ 
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with: M = record number;
tk = the k-th real magnitude; t∈[0,1];
yk = the k-th predicted magnitude; t∈[0,1].
2. The Linear Correlation Index (LC):
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Fig. 2 - Topology of an SV-Cm with 3 
hidden layers.
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3. The Absolute Mean Error (AbsErr): 
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with F() = linear function to re-scale the error into the original interval of magnitude.
4. The Weighted Error (Tau):
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tk − yk( )2

2s 2
k
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with: -∞≤Tau≤0;
σ2 = variance.
The following algorithms were chosen for the comparison:
a) an SV-Cm (Buscema and Benzi, 2011);
b) a Back Propagation Multilayer Perceptron (Buscema, 1998a; Le Cun et al., 1998);
c) a Linear Regression (Seber, 2003);
d. a Cart Decision Tree (Breiman et al., 1984; Quinlan, 1986).
Table 2 shows the results: SV-Cm overperforms the other algorithms from all the cost 

function point of view.

Fig. 3 - Distribution of magnitude of earthquakes from 1996 to 2002 (source: USGS).

(9)

(10)
σ
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Table 2 - Results of the blind validation of the compared algorithms (in brackets the number of hidden units of the 
ANNs).

Learning Machine RMSE Square 
Corr. Linear Corr. Magnitude 

ERROR TAU %ABS_Err

SV-Cm(32x32x32) 0.043075 0.730514 0.854701 0.387299 -22368.72461 10.62%

MLP_Bp(48) 0.047574 0.671461 0.819427 0.435622 -22368.72461 12.24%

CART 0.050017 0.655396 0.809565 0.453704 -31781.97266 12.29%

Linear Regression 0.068000 0.312867 0.559345 0.659792 -179580.8125 20.28%

4.2. Test 2: function approximation with USGS and ISIDe data together
In this second test, we consider a hybrid data set mixing the data of two catalogues, ISIDe 

and USGS, from 2005 to 2011. The global data set includes 203,108 events, represented in 
the same way of Test 1:7 independent variables (space and time) and magnitude as dependent 
variable, to be estimated. But in this test we split the data set according to a temporal criterion: 
events from 2005 to 2010 to be used as training set (200,825 events) and the 2011 events to be 
used for blind validation test (2283 events). In this test, we have compared the performances of 
the best two algorithms of Test 1: SV-Cm and MLP-Bp.

Table 3 shows the results of this new comparison: SV-Cm has again the best performance 
also predicting the magnitude of events occurred many months after its training data.

Table 3 - Results of the blind validation of the ANNs on 2001 events occurred one year after the training data.

ANN RMSE Absolute Error TAU Square Corr. Linear Corr.

SV-Cm(32x32x32) 0.04672195 0.43691791 -154.0453796 0.88547373 0.94099611

MLP_Bp(48) 0.04697858 0.44407987 -155.7422485 0.87074155 0.93313533

This test has many limits, but it may put in evidence the capability of ANNs to model highly 
nonlinear processes represented by uncertain, mixed, and imprecise values.

One evident limit of Test 2 is the contribution of many small events to increase the accuracy 
of the ANN estimation. To reduce this bias, we have repeated the same experiment removing all 
the events whose magnitude is less than 2.

According to this criterion, the training set is represented by 152,931 events (from 2005 to 
2010, ISIDe and USGS catalogues) and the testing set is represented by 1323 events (year 2011, 
both the catalogues).

Table 4 shows that: there is a decrement of the ANN performances, but the SV-Cm 
estimation remains quite good.

Table 4 - Results of the blind validation of the ANNs on 2001 events occurred one year after the training data, after the 
removal from the entire data set of the events with M<2.

ANN RMSE Absolute Error TAU Square Corr. Linear Corr.

SV-Cm(32x32x32) 0.05822717 0.40955503 -171.8819122 0.75952047 0.87150472

MLP_Bp(48) 0.06839291 0.50974736 -237.1380615 0.70042348 0.83691305
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If we smooth the real magnitude and the ANN estimations independently with an average 
mobile window, W, where W=10, it is possible to see also visually how good are the ANN 
estimations (see Fig. 4).

€ 
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where:
mt = real magnitude of the t-th event;
mi = mobile average of real magnitude of first W events;
et = estimated magnitude of the t-th event by ANN;
ei = mobile average of estimated magnitude of first W events.
These two tests have shown the capability of an advanced ANN to interpolate and to 

extrapolate the magnitude of many events, defined only by time and space features, from 
imprecise, mixed and uncertain data coming from different catalogues.

4.3. Test 3: pattern recognition and classification with USGS and ISIDe data together
This new test has been implemented to evaluate the capability of SV-Cm to execute also 

good pattern recognition (Bishop, 1995; Duda et. al., 2001): we have used the same catalogues 
of the previous Test 2, but we have split each event into one of three classes, according to the 
magnitude (see: Tables 5 and 6).

Table 5 - Frequency of distribution of training and testing events in three classes.

USGS + ISIDe catalogues
Class1 Class2 Class3

Tot
M<3.5 3.5≤M<4.5 M≥4.5

Training set (2005-2010) 9201 75095 68635 152931

Test set (2011) 114 492 717 1323

Fig. 4 - Mobile average of the real 
magnitude and of the ANN estimation 
of the events in 2011 recorded by 
USGS and ISIDe catalogues.

(11)

(12)
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Table 6 - Frequency of distribution of training and testing events in three classes.

USGS + ISIDe catalogues      %
Class1 Class2 Class3

Tot
M<3.5 3.5≤M<4.5 M≥4.5

Training set (2005-2010) 6.02% 49.10% 44.88% 100.00%

Test set (2011) 8.62% 37.19% 54.20% 100.00%

We have tested 12 different and known algorithms, coming from five families of machine 
learning (Hastie et al., 2009):

a.  �ANNs, advanced and classic: SV-Cm (Buscema and Benzi, 2011), Sine Net (Sn) 
(Buscema et al., 2006) and the classic Multi Layer Perceptron with the Back Propagation 
Learning Law (MLP-Bp) (Buscema, 1998a; Le Cun et al., 1998);

b.  �Decision Trees (Breiman et al., 1984): Bagging (Breiman, 1996, 1998; Freund and 
Schapire, 1997), Random Forest (Breiman, 2001; Livingston, 2005), Logit Boost 
(Breiman et al., 1984), and J48 [also known as C4.5: Quinlan (1986, 1993, 1996)];

c.  �Instance Learning: kNN with N=3 and Euclidean distance (Kowalski and Bender, 1972; 
Aha et al., 1991);

d.  �Functions: Logistic Regression (Cessie et al., 1992) and a Linear Regression (McLachlan, 
1992; Seber, 2003);

e.  �Probabilistic Nets: Bayes Net (Friedman et al., 1997) and Naïve Bayes (Zhang, 2004).
We have used the following academic softwares to implement all the algorithms: Weka Data 

Mining Software (Hall et al., 2009) and Semeion Software (Buscema, 2013). Table 7 shows the 
results of this comparison.
Table 7 - Blind testing results of pattern recognition of 3 classes: a comparison among different learning machines (in 
brackets the number of hidden units of the ANNs).

Type of learning machine M<3.5 3.5≤M<4.5 M≥4.5 A.Mean W.Mean # Errors

SV-Cm (48x48x48) 93.86% 90.04% 92.75% 92.22% 91.84% 108

Sn (48x48) 94.74% 89.63% 92.19% 92.19% 91.46% 113

MLP-Bp (48) 94.74% 88.01% 90.93% 91.23% 90.17% 130

Logit Boost 93.86% 89.63% 89.82% 91.10% 90.10% 131

J48 (C4.5) 88.60% 86.79% 94.14% 89.84% 90.93% 120

Bagging 87.72% 87.20% 94.28% 89.73% 91.08% 118

Random Forest 89.47% 86.79% 92.33% 89.53% 90.02% 132

Naive Bayes 92.98% 87.40% 80.89% 87.09% 84.35% 207

kNN_N=3_D=2.00 77.19% 84.15% 88.84% 83.39% 86.09% 184

Bayes Net 84.21% 79.27% 82.15% 81.88% 81.25% 248

Linear Regression 89.47% 83.54% 62.20% 78.40% 72.49% 364

Logistic 36.84% 89.84% 86.89% 71.19% 83.67% 216

These results show again that advanced ANNs (Sv-Cm and Sn) outperform the other 
algorithms. But they show also that a global and a worldwide training data set (also with the 
fusion of two different catalogues) is much useful for an individual and local prediction of the 
magnitude of a single event.
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It is useful at this point to analyze in details the Confusion Matrix of the results generated by 
the SV-Cm, which has realized the best prediction performance (see Table 8).

Table 8 - Confusion Matrix of the test set for SV-Cm.

Type of algorithm: SV-Cm(48x48x48) ANN magnitude estimation

Real Magnitude

Confusion Matrix M<3.5 3.5≤M<4.5 M≥4.5 Row Total Class Errors Class 
Accuracy

M<3.5 107 7 0 114 7 93.86%

3.5≤M<4.5 31 443 18 492 49 90.04%

M≥4.5 5 47 665 717 52 92.75%

  Column Total 143 497 683 1323 Total errors=108  

   

Arithmetic Mean 
Accuracy 92.22%  

Weighted Mean 
Accuracy 91.84%            

The Confusion Matrix shown in Table 6 allows interesting observations:
a.  �all the events with M<3.5 are correctly predicted, but seven (6.14%), and these errors 

have all occurred in the close class;
b.  �the moderate events (3.5≤M<4.5) are sometimes confused with smaller events (6.3%), 

and only in 18 cases (3.6%) are confused with the big ones;
c.  �only a very small number of the big events (M≥4.5) are confused with the small ones 

(0.7%), and a reasonable number of big events are confused with the moderate ones 
(6.5%).

The behaviour of the SV-Cm and of the main part of other algorithms make evident that a 
pattern recognition of the earthquake magnitude at short term is at least possible, even not useful.

We understand that an isolated and a retrospective application cannot be a milestone. In any 
case, it shows a promising use of advanced ANNs in this field. We also understand that, to reach 
up a stable point for earthquake prediction, our analysis has to be integrated with a deep and a 
smart data collection with an expertise that we lack. We also think that ANN technology has 
to be embedded with other methodologies already known and validated in earthquake analysis 
(Keilis-Borok, 1996; Romanchkova et al., 1998; Kanamori, 2003; Crampin, 2012; Peresan et 
al., 2012; Radan et al., 2013).

4.4. Test 4: pattern recognition with ISIDe data only
The experiment with the ISIDe database was implemented with a different protocol, because 

in this case we have the possibility to activate a non-retrospective prediction task: using the ISIDe 
database we were sure to have, day after day, the real magnitude of every earthquake in Italy.

4.4.1. Research protocol for the Italian database
The data are entered daily into a single database from which two training and testing subsets 

are extracted for the tuning phase of each neural network. The tuning phase of a network 
includes training and testing sub phases.
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The training subset temporally consists of events until about one month before the day to 
predict; and the testing subset starts from the day following the last in training and, therefore, 
will consist of by the events of the last month. Thus, a training of each neural network is done 
every day. This operation has the task of learning the value of the magnitude of any actual event 
starting from the input vector, which is made up of the space-time information differently coded 
for each neural network.

During the training phase, the system verifies the predictive power of the network by tests on 
the testing subset always saving the network with the best RMSE.

After the tuning phase, in the recall phase, each neural network elaborates an artificial data set 
(prediction). This prediction data set is composed of n records equal to a number of quadrants of 
the affected area to the prediction of the next day. Clearly, each prediction data set will have an 
input vector congruous with the one used by the neural network in the tuning phase.

The results, therefore, are then calculated by comparing the value of the magnitude of 
the event really happened with those provided by the corresponding neural networks in each 
quadrant. The protocol used allows evaluating the daily prediction error obtained by each single 
neural network.

4.4.2. Input vector codifies
The first input vector consists of 7 variables: year, month, day, hour, latitude, longitude, 

and depth. The second input vector consists of 15 variables: the previous seven and 8 more 
statistical variables calculated on the events recorded in each quadrant analysed (Table 9).

Table 9 - Variables.

TRAIN statistical variables:
- TOT events (from T0 to T2)
- Max magnitude (from T0 to T2)
- Min magnitude (from T0 to T2 )
- Mean magnitude (from T0 to T2)
- TOT events (from T1 to T2)
- Max magnitude (from T1 to T2)
- Min magnitude (from T1 to T2)
- Mean magnitude (from T1 to T2)

TEST statistical variables:
- TOT events (from T0 to Tend)
- Max magnitude (from T0 to Tend)
- Min magnitude (from T0 to Tend)
- Mean magnitude (from T0 to Tend)
- TOT events (from T2 to Tend)
- Max magnitude (from T2 to Tend)
- Min magnitude (from T2 to Tend)
- Mean magnitude (from T2 to Tend) 

PRED statistical variables:
- TOT events (from T2 to Tend)
- Max magnitude (from T2 to Tend)
- Min magnitude (from T2 to Tend)
- Mean magnitude (from T2 to Tend)
- TOT events (last 15 days)
- Max magnitude (last 15 days)
- Min magnitude (last 15 days)
- Mean magnitude (last 15 days) 

As already said, the file of prediction refers to the next day. Therefore, the only available 
information is the date that constitutes 3 variables (year, month and day). The other 4 variables 
(time, latitude, longitude, and depth) are artificially obtained by the information present in the 
database of real events. It is worth remembering that the number of records in prediction, every 
day, will be equal to the total number of quadrants where it happened at least a real seismic 
event.

Having divided the geographic area of interest into quadrants of 400 km2 (20×20), we have 
considered the latitude and longitude of the central point of each quadrant. A random value 
between 0 and 23 was calculated for the time.

The other variable, depth, was calculated as the average value of all events recorded in each 
quadrant. In summary, the 7 variables considered in the prediction data set are:
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-  �year, month and day of a day to predict;
-  �time: random value between 0 and 23;
-  �latitude and longitude: coordinates of the central point of all quadrants considered;
-  �depth: average value calculated for the events recorded in each quadrant.

4.4.3. The results of Test 4
In this paragraph we report the prediction results obtained from the neural networks in the 

period from July 2012 to June 2013. For each day, we have calculated the network results by 
comparing them with the values of the real events recorded considering 3 various distinctions in 
Confusion Matrix (Figs. 4 and 5):

a.   with respect to 2 classes:
 	  •  low magnitude: M≤2.0;
 	  •  high magnitude: M>2.0;
b.   with respect to 3 classes:
 	  •  low magnitude: M≤1.5;
 	  •  moderate magnitude: 1.5<M<3.0;
 	  •  high magnitude: M≥3.0;
c.   with respect to 4 classes:
 	  •  null: M<0.5;
 	  •  low magnitude: 0.5≤M≤1.5;
 	  •  moderate magnitude: 1.5<M<3.0;
 	  •  high magnitude: M≥3.0.
From the first Confusion Matrix (with respect to 2 classes, Fig. 7) we can calculate:
 	  •  global accuracy, sensitivity and specificity;
 	  •  probability of false alarm and probability of missed alarm.

€ 

Global _ accuracy =
TP + TN( )

TP + TN + FP + FN( )
;

Sensitivity =
TP

TP + FN( )
;

Specificity =
TN

TN + FP( )
;

Probability _ false _ alarm =
FP

TP + FP( )
;

Probability _ missed _ alarm =
FN

TN + FN( )
.

Fig. 5 - Explanation 
of the pre-processing 
coding system adopted 
to increase the 7 input 
variables of the data set 
into 15, in order to make 
daily prediction for each 
of the 2054 boxes of the 
assumed grid.

(13)

(14)

(15)

(16)

(17)



240

Boll. Geof. Teor. Appl., 56, 227-256	 Buscema et al.

From the second and third Confusion Matrices, for each class, it is possible to calculate:
•	 global accuracy = (number of values correctly classified) / (number of total predictions);
•	 accuracy of X = (number of values correctly classified as class X) / (number of values 

belonging to the class X);
•	 true ratio of X = (number of values correctly classified as class X) / (number of values 

classified as class X).

€ 

Global _ accuracy =
TN + TL + TM + TH( )

TN + TL + TM + TH + FN + FL + FM + FH( )
;

TrueRatio_ Low =
TL

TL + FL( )
;

TrueRatio_ Moderate =
TM

TL + FM( )
;

TrueRatio_ High =
TH

TL + FH( )
;

Accuracy _ Low =
TL

TL + FN + FM + FH( )
;

Accuracy _ Moderate =
TM

TM + FN + FL + FH( )
;

Accuracy _ High =
TH

TH + FN + FL + FM( )
.

€ 

Global _ accuracy =
TN + TL + TM + TH( )

TN + TL + TM + TH + FN + FL + FM + FH( )
;

TrueRatio_ Low =
TL

TL + FL( )
;

TrueRatio_ Moderate =
TM

TL + FM( )
;

TrueRatio_ High =
TH

TL + FH( )
;

Accuracy _ Low =
TL

TL + FN + FM + FH( )
;

Accuracy _ Moderate =
TM

TM + FN + FL + FH( )
;

Accuracy _ High =
TH

TH + FN + FL + FM( )
.

€ 

Global _ accuracy =
TN + TL + TM + TH( )

TN + TL + TM + TH + FN + FL + FM + FH( )
;

TrueRatio_ Low =
TL

TL + FL( )
;

TrueRatio_ Moderate =
TM

TL + FM( )
;

TrueRatio_ High =
TH

TL + FH( )
;

Accuracy _ Low =
TL

TL + FN + FM + FH( )
;

Accuracy _ Moderate =
TM

TM + FN + FL + FH( )
;

Accuracy _ High =
TH

TH + FN + FL + FM( )
.

We combined the daily results in monthly tables. Thus, for each month the table reports the 3 
Confusion Matrices that summarize the results. In addition, for each month, we show two 

maps of Italy divided into 2054 quadrants: one with the real events and the other with the 
network output.

Since in one quadrant it is possible that multiple events occur on the same day, to evaluate 

Fig. 6 - On research protocol for 
ANN evaluation and prediction: 
on the right side, the structure 
of the global work for tuning the 
ANNs and the daily prediction 
one day before the new event; 
on left the side, a detail of the 
tuning phase, where the ANNs 
are calibrated.

(18)

(19)

(20)

(21)

(22)

(23)

(24)



Artificial Adaptive Systems to predict the magnitude of earthquakes	 Boll. Geof. Teor. Appl., 56, 227-256

241

the performance of the network, the maximum value of the network output for each quadrant is 
compared with the maximum value of magnitude recorded in that quadrant.

All the results obtained, summarized in monthly tables from July 2012 to June 2013, are 
reported in the Appendix.

5. Conclusions

The results of this research point out two types of considerations, one about the different 
experiments carried out in this paper, and the other about the next possible use of advanced 
ANN algorithms in earthquakes prediction.

The experiments show some limits and some interesting points:
a.  �when we use advanced ANNs with global and representative data  (USGS and ISEIDe 

databases) to predict local events, we reach up interesting results, both when we need to 
predict the value of the magnitude of a single event, and when we need to classify the 
single event in a specific class (i.e., small, moderate, severe earthquake). These results do 
not mean that with these data and with ANN algorithms we are able and ready to make 
useful daily prediction. These results simply mean that research for earthquake prediction 
with ANNs, fused with other already developed methods (i.e., Pattern Informatics), and 
using large worldwide samples of data is a reasonable aim;

b.  �when we decide to implement the same task using only local data (i.e., the Italian 
database ISIDe), the performances of ANNs decrease (also if they are not statistically 
trivial). The reason why, for example, the severe events are systematically underestimated 
(30%-40% of class accuracy) is evident: in the ISIDe database there are few severe events 
and many moderate and small events;

c.  �reasonable conclusion: any local and specific earthquake prediction task has to be 
considered on a global scale, using, consequently, a worldwide sample of data. This is due 
to the fact that we do not know a priori “which area interacts directly or indirectly with 
which one”. ANNs are suitable to approximate these side effects (Tastle, 2013);

d.  �earthquake catalogues represent a problem: problem of coding system, of precision and 
sensitivity, of completeness, etc. Nevertheless, each catalogue seems to present also a 
systematic error. Consequently, putting together different catalogues is not always a bad 

Fig. 7 - Framework of Confusion Matrix with 2 
classes (null and moderate quakes): on the columns 
the ANN estimation and on the rows the real 
magnitude occurred.
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practice. Especially if we mix data coming from different sources after a specific analysis 
and a consequent planning. ANNs are suitable also to process imprecise data collected with 
different criteria (Bengio, 2009). Through the statistics of the results of the blind testing phase, 
it is possible to establish how much the ANN has worked properly in these extreme cases;

e.  �the input information we consider in this paper is not the only information that needs to 
be coded for a prediction task and the code system that we adopted is not the only and 
the best way to code data for ANNs. In the next research, we should take into account 
local and global information about geology, atmospheric data, volcano dynamics, and 
electromagnetic fields. Advanced ANNs are able to select spontaneously the significant 
variables of a complex data set (Buscema et al., 2013a) and they are also able to justify 
the reasons of their variable pruning [white box versus black box: Buscema  et al. 
(2014)];

f.  �advanced ANNs, trained on similar or different data sets with the same target, may be 
assembled in an ensemble (Kuncheva, 2004), also with non-ANN algorithms, in order to 
compose a “parliament of judges” able to refine their decision according to the different 
competencies of their “members” (Buscema, 1998b; Buscema et al., 2010, 2013b). This 
architecture could resolve the problem of the incompleteness of data, of their imprecision 
and also the scarcity of data in some geological field.  But above all, this method would 
increase the precision of the predicted estimates.

In conclusion, this work represents a first step to implement and use advanced ANNs in the 
arena of earthquake prediction/forecasting. The next step is to expand our cooperative networks 
to professional geologists. We think that, from the intelligent fusion of ANN technology, other 
algorithms, and big variety of earthquake data, we will be able to contribute to the growing 
of the earthquake prediction research area. This area is not important only from a scientific 
viewpoint: a lot of people die every year because of big earthquakes. A culture that, in the last 
century, was able to collect the best of the science to build up a nuclear device to destroy human 
lives has the duty to make much more effort to collect the best of the science to save lives.

Acknowledgments. This study has benefited from funding provided by the Italian Presidenza del Consiglio 
dei Ministri - Dipartimento della Protezione Civile (DPC), project S3-2012. This paper does not necessarily 
represent DPC official opinion and policies.

Fig. 8 - Framework of Confusion Matrix with 3 
classes (low, moderate and high quakes) and with 4 
classes (null, low, moderate and high quakes).
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Appendix: Results in tables and maps

Results of July 2012

Confusion Matrix with respect to 2 classes.

Confusion Matrix with respect to 3 classes.

Confusion Matrix with respect to 4 classes.

Fig. A1 - Results of July 2012: a) maximum magnitude of real events; b) maximum magnitude predicted by ANN.
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Results of August 2012

Confusion Matrix with respect to 2 classes.

Confusion Matrix with respect to 3 classes.

Confusion Matrix with respect to 4 classes.

Fig. A2 - Results of August 2012: a) maximum magnitude of real events; b) maximum magnitude predicted by ANN.
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Results of September 2012

Confusion Matrix with respect to 2 classes.

Confusion Matrix with respect to 3 classes.

Confusion Matrix with respect to 4 classes

Fig. A3 - Results of September 2012: a) maximum magnitude of real events; b) maximum magnitude predicted by ANN.
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Results of October 2012

Confusion Matrix with respect to 2 classes.

Confusion Matrix with respect to 3 classes.

Confusion Matrix with respect to 4 classes.

Fig. A4 - Results of October 2012: a) maximum magnitude of real events; b) maximum magnitude predicted by ANN.
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Results of November 2012

Confusion Matrix with respect to 2 classes.

Confusion Matrix with respect to 3 classes.

Confusion Matrix with respect to 4 classes.

Fig. A5 - Results of November 2012: a) maximum magnitude of real events; b) maximum magnitude predicted by ANN.
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Results of December 2012

Confusion Matrix with respect to 2 classes.

Confusion Matrix with respect to 3 classes.

Confusion Matrix with respect to 4 classes.

Fig. A6 - Results of December 2012: a) maximum magnitude of real events; b) maximum magnitude predicted by ANN.
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Results of January 2013

Confusion Matrix with respect to 2 classes.

Confusion Matrix with respect to 3 classes.

Confusion Matrix with respect to 4 classes.

Fig. A7 - Results of January 2013: a) maximum magnitude of real events; b) maximum magnitude predicted by ANN.
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Results of February 2013

Confusion Matrix with respect to 2 classes.

Confusion Matrix with respect to 3 classes.

Confusion Matrix with respect to 4 classes.

Fig. A8 - Results of February 2013: a) maximum magnitude of real events; b) maximum magnitude predicted by ANN.
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Results of March 2013

Confusion Matrix with respect to 2 classes.

Confusion Matrix with respect to 3 classes.

Confusion Matrix with respect to 4 classes.

Fig. A9 - Results of March 2013: a) maximum magnitude of real events; b) maximum magnitude predicted by ANN.



254

Boll. Geof. Teor. Appl., 56, 227-256	 Buscema et al.

Results of April 2013

Confusion Matrix with respect to 2 classes.

Confusion Matrix with respect to 3 classes.

Confusion Matrix with respect to 4 classes.

Fig. A10 - Results of April 2013: a) maximum magnitude of real events; b) maximum magnitude predicted by ANN.



Artificial Adaptive Systems to predict the magnitude of earthquakes	 Boll. Geof. Teor. Appl., 56, 227-256

255

Results of May 2013

Confusion Matrix with respect to 2 classes.

Confusion Matrix with respect to 3 classes.

Confusion Matrix with respect to 4 classes.

Fig. A11 - Results of May 2013: a) maximum magnitude of real events; b) maximum magnitude predicted by ANN.



256

Boll. Geof. Teor. Appl., 56, 227-256	 Buscema et al.

Results of June 2013

Confusion Matrix with respect to 2 classes.

Confusion Matrix with respect to 3 classes.

Confusion Matrix with respect to 4 classes.

Fig. A12 - Results of June 2013: a) maximum magnitude of real events; b) maximum magnitude predicted by ANN.


